ZAE Bayern e.V.

i-MEET @ FAU

EnCN @ FAU

How to stabilize organic solar cells beyond 100.000 hrs of operational stability

C. J. Brabec

ISOS 2018, Suzhou, 22nd of October

summary: acknowledgements

Motivation

Technology

Outlook

Conclusion

Iobias Unruh, Joh. Will

motivation: importance of PV "key performance indicators"

Motivation

Technology

Outlook

Conclusion

Lifetime impacts costs, quite similar to efficiency!

Levelized energy cost vs Lifetime

Espinosa et al., Energy Environ. Sci., 2014, 7, 855 Kalowekamo et al., Solar Energy 83 (2009) 1224

4

motivation: printed semiconductors for photovoltaics

Motivation Technology-High Throughput

Outlook

Conclusion

technology: High Throughput Testing of Devices

Statistical (> 1000 devices in parallel) Lifetime Testing in Detail \geq

Cooled

LED

Setup

environ.

ZAE BAYERN

k temp.

egradatio

(Current degradation of layers) Temperature ovens White-ligh Metal LED setup halide and in-situ setup

technology: High Throughput Testing of Devices

Why Statistical Lifetime Testing – why does it take 100s of samples?

Motivation Technology-High Throughput

Outlook

Conclusion

1 substrate, 6 devices

12 LED chambers

9 substrates, 54 devices

12 metal halide chambers

selected devices show trend

technology: High Throughput Testing of Devices

> Why precisely controlling external conditions

When can you trust such degradation data to identify mechanisms?

ZAE BAYERN

technology: Photodegradation Mechanisms

ZAE BAYERN

motivation: printed semiconductors for photovoltaics

technology: Photodegradation Mechanisms

are demixing during operation – phase separation!

Motivation

Technology

Outlook

Conclusion

technology: materials, formulation & microstructure

Ning Li, ... & CJB, Energy Environ. Sci., 2016. Ning Li, ... & CJB, Nature Communication 2017

Predicting miscibility in TD limit requires two parameters

- Spinodal demixing depends on mixing ratio and mol. weight
- Enthalpic demixig positive χ_{12} causes demixing

Determination of χ_{12} is essential! Experimental? **Theoretical?**

Motivation

Technology

Outlook

Conclusion

Outlook

technology: predicting miscibility

J. Perea ... & CJB, JPC-B 2016 J. Perea ... & CJB. JPC-C 2017

Motivation Technology-High Throughput

Outlook

Conclusion

technology: Prediction of HSP, miscibility & stability of blends

- Calculation time was significantly shortened with the help of Machine Learning (Gaussian Prediction – gpHSP method)
- < 1 second calculation time when using partial information (FP) instead of QC calculations

Motivation Technology-High Throughput

Outlook

Conclusion

J. Perera ... & CJB, JPC-C 2017

J. Perea & CJB, JPC-B 2016

technology: Prediction of HSP, miscibility & stability of blends Having learned that "demixing" is the major cause for burn-in >(1) exclusively use miscible systems (2) learn to stabilize instable microstructures – e.g. vitrification Motivation CinHa Technology-C₁₀H High Throughput FBT-Th₄(1,4) PffBT4T-2OD 1.2 10 Outlook 1.0 0.8 Normalized J_{sc} 0.8 Conclusion Norm. J_{sc} POPITIPORI 0.6 0.6 Nu N ż 0.4 0.4 0.2 0.0 0.2 0.8 04 0.5 0.2 Voltraste (V) PCE11:PCBM PCE11 PCBM ~ one sun w/t additive PCE11:o-IDTBR 0.0 ~one sun 0.0 200 600 800 1000 400 20 40 100 0 60 80 Light aging time (h) Time (h)

ZAE BAYEDN

Burn-in in the dark: the role of microstructure

Motivation

Technology

Outlook

Conclusion

- Summary: demixing of amorphous BHJ regime causes burn-in
- Statement: developing strategies to stabilize instable microstructures

motivation: printed semiconductors for photovoltaics

Outlook

Conclusion

Chemical Degradation: *ITIC derivatives*

- 5 ITIC variations: stability with PBDB-T
- Efficiencies of various combinations: about 8 10 % •
- **ITIC-DM** has a totally **different trend why?** •

Technology

Is demixing explaining all observiations? NO!

- **Surprisingly ITIC-DM** is unstable under illumination!
- No photooxidation! We observe photodegradation of the endgroup

Chemical Degradation: *ITIC derivatives*

Minisummary: •

- **burn-in** (due to demixing) has to flatten out •
- If not other effects may be dominant •

Motivation

Technology

Outlook

Conclusion

This is a minor

motivation: printed semiconductors for photovoltaics

Under white light LED illumination (no UV < 400 nm)

Under metal halide lamp (UV onset at < 330 nm)

UV stability has to be determined for every new compound!

Technology

Minisummary:

- **Controlling spectrum is essential** can't compare lifetime from LED and metal halide illumination
- Correcting lamp degradation is essential

motivation: printed semiconductors for photovoltaics

Chemical Degradation: *ITIC derivatives*

- How to go from 10.000 hrs to 100.000 hrs?
- **Acceleration!**

- Previous studies suggest no correlation to 1 sur
- We developed a protocol highly ALT testing.

T-controlled cell holder

Cooling System

Outlook

Conclusion

Outlook

Conclusion

- How to go from 10.000 hrs to 100.000 hrs?
- Acceleration at 300 suns the case of P3HT:PCBM
 - Setup must allow to measure jV characteristics to understand ageing
 - P3HT:PCBM has a photocurrent of 1.8 A/cm2 at ~ 300 sun.
- Degradation (in Jsc) is independent from concentration factor
- Data plotted as function of "Sun Equivalent Hours" (se*h)

Technology

Outlook

Conclusion

Chemical Degradation: *ITIC derivatives*

- Contolled degradation under 25 x concentration, no UV, T $\sim 40^{\circ}$ C
- OPV46: IDTBR (8 10 %) a rather stable system with some burn-in
- 25 sun equivalents for 6000 hrs -> 150.000 se*h

technology: materials, formulation & microstructure

